The tools we use in research should reflect the full spectrum of genetic diversity, but they often do not. This is a gap that an international team of scientists is exploring through the lens of induced pluripotent stem cell (iPSC) lines. iPSCs are a type...
Receiving a heart transplant is a life-changing journey, and you may be wondering about your treatment options. This is why The Heart Hub is excited to introduce A Hearts Journey: A Patient & Caregiver Guide to Heart Transplant. This brand-new, interactive...
On March 5, 2025, The Hospital for Sick Children (SickKids) received a significant breakthrough in pediatric research with an $11.7 million award from Genome Canada. As part of the Canadian Precision Health Initiative, a total of $81 million in...
After eight transformative years at the Ted Rogers Centre for Heart Research (TRCHR), Dr. Soror Sharifpoor is embarking on an exciting new chapter in her career. As the Director of Strategy & Translation at the Translational Biology and Engineering Program (TBEP)...
With a mission to support novel approaches to managing and preventing heart failure, the Ted Rogers Centre for Heart Research uses its Innovation Fund to propel emerging research with great potential. The 2024-25 Innovation Fund Seed Grants are currently open and you...
The Ted Rogers Centre for Heart Research is delighted to welcome Iris Cohn as the new Innovator in Genomic Translation - also recently promoted to Director of the Pharmacogenetics (PGx) Program at The Hospital for Sick Children. A trained pharmacist, Iris established...
3D models of heart failure… stiffened hearts in diabetes…. saving infant lives
After a heart attack, this peptide protects the heart from further injury
Featured Event
Heart Failure Symposium 2025
Virtual Library
Visit our YouTube channel filled with world-class heart failure educational sessions on diverse topics
Investigating Heart Failure
Personalized Medicine
Equitable Access to Care
Translating Innovation
For Patients
For Clinicians
For Researchers
Extracellular vesicles: what can they tell us about diabetes and heart failure?
One emerging area of medical research that is rapidly expanding around the globe focuses on extracellular vesicles (EVs). There is even now an international society devoted to how these vesicles function in the body.
The rising interest in EVs follows recent discoveries that show that these small membrane-bound vesicles play a role in how many diseases develop – including those of the cardiovascular system. EVs have been found to influence both how cells function and communicate with one another, which essentially governs all bodily processes.
The Ted Rogers Centre funded a promising project by one young University of Toronto researcher, Shawn Veitch, through its Education Fund that supports the next generation of scientists.
“This is an exciting research area, and I’m eager to understand how these vesicles are involved in the initiation and progression of cardiovascular diseases,” says Shawn, who works in the Jason Fish lab at University Health Network.
Target I: type-2 diabetes
Researchers have found that, when disease is present, the contents and concentration of EVs in the blood change dramatically. As a result, unhealthy cells can produce many more EVs than healthy cells.
In keeping with one of the Fish lab’s key areas of investigation, Shawn’s project is focused on type 2 diabetes. It is known that a flood of EVs is released under conditions of inflammation and hyperglycemia – hallmark symptoms of diabetes.
Shawn’s new project is to further investigate these EVs in vivo, and hunt for clues:
Which specific cells take up these circulating vesicles?
How do EVs then function after they enter those cells?
Does diabetes change either of these?
We don’t yet know if this surge of EVs promotes the progression of diabetes or does just the opposite: is it protecting the body against inflammation?
Shawn hopes to yield potential answers by identifying where the EVs go, which cells they communicate with, and how this affects their function. Could they, for instance, be communicating with specific cell types in the heart?
Target II:heart failure
The link between type 2 diabetes and heart failure is well established. But what happens to the heart during early stages of diabetes?
“Most of the research focus to date has been on heart failure that is already established,” Jason Fish says. “But we need to understand what’s promoting heart failure early on. Diabetic patients often don’t see a cardiologist until it’s too late. We have to bridge this gap.”
Tracing the journey of these EVs may point to a spreading effect of fibrosis that links diabetes to the development of heart failure. It may also reveal how blood vessel function becomes compromised in this disease. Importantly, it could also yield a critical biomarker that would help researchers identify a signature specific to the early stages of cardiovascular disease (prior to heart failure) and identify potential therapeutic pathways.
That’s the ideal outcome of this research – discover a biomarker, a red flag that would tell physicians after a simple blood test if a patient was at heightened risk for heart failure in coming years.
“It is a very feasible outcome for this research,” Shawn says. “The Ted Rogers Centre has really opened up the scope of possibilities because we have the opportunity to collaborate with people we otherwise would not, and really focus on improving heart failure outcomes.”