Cardiac effects of Covid-19

Mansoor Husain, MD

CICU, Toronto General Hospital

Seminar for U of T Cardiology Residents Mar 31, 2020

Disclosures:

None for this topic

Key references:

Shi *et al.* JAMA Cardiol doi:10.1001/jamacardio.2020.0950 [Published online Mar 25, 2020]
 Guo *et al.* JAMA Cardiol doi:10.1001/jamacardio.2020.1017 [Published online Mar 27, 2020]
 Driggin *et al.* J Am Coll Cardiol doi: 10.1016/j.jacc.2020.03.031 [Published online Mar 27, 2020]

Driggin E et al, J Am Coll Cardiol (2020), doi: https://doi.org/10.1016/j.jacc.2020.03.031 The promise of a healthy heart.

Learning Objectives

- **1. Self care** enables better patient-, colleague-, family- & friend-care during Covid-19. **You are a role model**.
- 2. Cardiovascular manifestations of Covid-19
- 3. Cardiovascular consequences of treatments for Covid-19

ICU Admissions (predicted vs. observed)

Sanders B, 2020: Ontario ICU admission model – Mar 26 Superimposed CBC News compilation of CCO data – Mar 30

Klerkin et al. 2020 10.1161/CIRCULATIONAHA.120.046941

Madjid et al. JAMA Cardiol. doi:10.1001/jamacardio.2020.1286

N=137: Survivors Age 52, M 59%, HTN 23%, T2D 14%, CAD 1%, Moderate 53%, Severe 39%, Critical 8%

Zhou et al. Lancet 2020; 395:1054-62 doi.org/10.1016/ S0140-6736(20)30566-3

Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

> N=191, 137 discharged, 54 died; comorbidity (48%); HTN (30%), T2D (19%), CAD (8%) Death was associated with age (OR 1.1/y; p=0.004), d-dimer >1µg/mL (OR 18; p=0.003)

Covid-19 patients with rising hs-troponin, rising d-dimer & persistent lymphopenia had higher mortality

Zhou *et al.* Lancet 2020; 395:1054–62 doi.org/10.1016/ S0140-6736(20)30566-3

Shi et al. JAMA Cardiol doi:10.1001/jamacardio.2020.0950

FOR HEART RESEARCH

	Patlents, No. (%)			
		Cardiac injury		
Characteristic	All (n = 416)	With (n = 82)	Without (n = 334)	P value
Age, median (range), y	64 (21-95)	74 (34-95)	60 (21-90)	<.001
Female	211 (50.7)	38 (46.3)	173 (51.8)	.39
Signs and symptoms at admission				
Fever	334 (80.3)	63 (76.8)	271 (81.1)	.44
Cough	144 (34.6)	28 (34.1)	116 (34.7)	>.99
Shortness of breath	117 (28.1)	26 (31.7)	91 (27.2)	.41
Fatigue	55 (13.2)	15 (18.3)	40 (12.0)	.15
Sputum production	23 (5.5)	3 (3.7)	20 (6.0)	.59
Muscle ache	19 (4.6)	5 (6.1)	14 (4.2)	.55
Diarrhea	16 (3.8)	1 (1.2)	15 (4.5)	.22
Chest pain	14 (3.4)	11 (13.4)	3 (0.9)	<.001
Sore throat	12 (2.9)	4 (4.9)	8 (2.4)	.26
Rhinorrhea	10 (2.4)	3 (3.7)	7 (2.1)	.42
Headache	9 (2.2)	2 (2.4)	7 (2.1)	.69

Table 1. Baseline Characteristics and Laboratory and Radiographic Findings of 416 Patients With COVID-19

Patients with Covid-19 cardiac injury are <u>older</u> (mean age 74) and present more often with CP (13%)

Shi et al. JAMA Cardiol doi:10.1001/jamacardio.2020.0950

	Patients, No. (%)			_
		Cardiac Injury		
Characteristic	All (n = 416)	With (n = 82)	Without (n = 334)	P value
Chronic medical illness				
Hypertension	127 (30.5)	49 (59.8)	78 (23.4)	<.001
Diabetes	60 (14.4)	20 (24.4)	40 (12.0)	.008
Coronary heart disease	44 (10.6)	24 (29.3)	20 (6.0)	<.001
Cerebrovascular disease	22 (5.3)	13 (15.9)	9 (2.7)	<.001
Chronic heart failure	17 (4.1)	12 (14.6)	5 (1.5)	<.001
Chronic renal failure	14 (3.4)	5 (6.1)	9 (2.7)	.16
Chronic obstructive pulmonary disease	12 (2.9)	6 (7.3)	6(1.8)	.02
Cancer	9 (2.2)	7 (8.5)	2 (0.6)	<.001
Pregnancy	7 (1.7)	0	7 (2.1)	.35
Hepatitis B Infection	4(1.0)	2 (2.4)	2 (0.6)	.18

Table 1. Baseline Characteristics and Laboratory and Radiographic Findings of 416 Patients With COVID-19

Patients with Covid-19 cardiac injury tend to have HTN (60%), T2D (25%), CAD (30%) and HF (15%)

Hx/o **COPD** (7%) and **Cancer** (9%) are less common but have high OR (2-10 fold)

Shi et al. JAMA Cardiol doi:10.1001/jamacardio.2020.0950

	Patients, No. (%)				Covid 10 cordice
		Cardiac Injury		-	
Characteristic	All (n = 416)	With (n = 82)	Without (n = 334)	P value	injury are more
Laboratory findings at admission, median (IQR)					likely to manifest
Leukocytes/µL	5800 (4300-8300)	9400 (6900-13 800)	5500 (4200-7400)	<.001	
Lymphocytes/µL	900 (600-1300)	600 (400-900)	1000 (800-1400)	<.001	Lymphopopia
Platelets × 10 ³ /µL	207 (153-265)	172 (111-215)	216 (165-273)	<.001	суприорена
Erythrocytes ×10 ⁶ /µL	4.1 (3.6-4.4)	4.0 (3.4-4.3)	4.1 (3.6-4.4)	.01	
Hemoglobin, g/dL	12.4 (11.1-13.4)	12.5 (10.8-13.2)	12.4 (11.2-13.5)	.34	
C-reactive protein, mg/dL	4.5 (1.4-8.5)	10.2 (6.4-17.0)	3.7 (1.0-7.3)	<.001	
Procalcitonin, ng/mL	0.07 (0.04-0.15)	0.27 (0.10-1.22)	0.06 (0.03-0.10)	<.001	
Creatinine kinase-myocardial band, ng/mL	1.0 (0.7-2.0)	3.2 (1.8-6.2)	0.9 (0.6-1.3)	<.001	
Myohemoglobin, µg/L	47 (28-93)	128 (68-305)	39 (27-65)	<.001	
High-sensitivity troponin I, µg/L ^a	<0.006 (<0.006-0.02)	0.19 (0.08-1.12)	<0.006 (<0.006-0.009)	<.001	Elevated troponin
N-terminal pro-B-type natriuretic peptide, pg/mL	219 (73-699)	1689 (698-3327)	139 (51-335)	<.001	
Alanine aminotransferase, U/L	28 (18-46)	29 (19-44)	28 (18-46)	.93	Elevated BNP
Aspartate aminotransferase, U/L	30 (22-43)	40 (27-60)	29 (21-40)	<.001	
Albumin, g/dL	3.6 (3.2-3.8)	3.2 (2.9-3.4)	3.7 (3.3-3.9)	<.001	
Creatinine, mg/dL	0.67 (0.55-0.81)	1.15 (0.72-1.92)	0.64 (0.54-0.78)	<.001	
Potassium, mEq/L	4.0 (3.6-4.4)	4.0 (3.6-4.6)	4.0 (3.6-4.3)	.65	AKI
Sodium, mEq/L	140 (138-144)	141 (138-146)	140 (138-143)	.08	
Chest radiography and computed tomography findings					
Pneumonia					
Unilateral	105 (25.2)	7 (8.5)	98 (29.3)	<.001	
Bilateral	311 (74.8)	75 (91.5)	236 (70.7)		Mottled glass CXR
Multiple mottling and ground-glass opacity	68 (16.3)	53 (64.6)	15 (4.5)	<.001	l č

Shi et al. JAMA Cardiol doi:10.1001/jamacardio.2020.0950

	Patients, No. (%))		
		Cardiac Injury	_	
Characteristic	All (n = 416)	With (n = 82)	Without (n = 334)	P value
Time from symptom onset to admission, edian (range), d	10 (1-30)	10 (1-30)	10 (1-28)	.27
Treatment				
Oxygen Inhalation	316 (76.0)	26 (31.7)	290 (86.8)	<.001
Noninvasive ventilation	51 (12.3)	38 (46.3)	13 (3.9)	<.001
Invasive mechanical ventilation	32 (7.7)	18 (22.0)	14 (4.2)	<.001
Continuous renal replacement therapy	2 (0.5)	2 (2.4)	0	.04
Antiviral treatment	403 (96.9)	82 (100)	321 (96.1)	.08
Glucocorticolds	304 (73.1)	72 (87.8)	232 (69.5)	<.001
intravenous immunoglobulin therapy	259 (62.3)	68 (82.9)	191 (57.2)	<.001
Antibiotic treatment	235 (56.5)	68 (82.9)	167 (50)	<.001
Complications				
ARDS	97 (23.3)	48 (58.5)	49 (14.7)	<.001
Acute kidney injury	8 (1.9)	7 (8.5)	1 (0.3)	<.001
Electrolyte disturbance	30 (7.2)	13 (15.9)	17 (5.1)	.003
Hypoproteinemia	27 (6.5)	11 (13.4)	16 (4.8)	.01
Anemia	13 (3.1)	4 (4.9)	9 (2.7)	.30
Coagulation disorders	12 (2.9)	6 (7.3)	6 (1.8)	.02
Clinical outcome				
Remained in hospital	319 (76.7)	38 (46.3)	281 (72.2)	
Discharged	40 (9.6)	2 (2.4)	38 (23.4)	- <.001
Died	57 (13.7)	42 (51.2)	15 (4.5)	<.001

Covid-19 cardiac injury is <u>unlikely</u> to be related to:

anti-viral Rx steroids Rx anti-microbial Rx

Patients with **Covid-19 cardiac** injury are more likely to have :

ARDS (60%) [OR ~4]

Mortality (50%) [OR ~10]

Shi et al. JAMA Cardiol doi:10.1001/jamacardio.2020.0950

JAMA Cardiology | Original Investigation

Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)

OBJECTIVE To evaluate the association of underlying cardiovascular disease (CVD) and myocardial injury with fatal outcomes in patients with COVID-19.

CONCLUSIONS AND RELEVANCE Myocardial injury is significantly associated with fatal outcome of COVID-19, while the prognosis of patients with underlying CVD but without myocardial injury is relatively favorable. Myocardial injury is associated with cardiac dysfunction and arrhythmias. Inflammation may be a potential mechanism for myocardial injury. Aggressive treatment may be considered for patients at high risk of myocardial injury.

Take away message: find Covid-19 patients with myocardial injury, consider them for more aggressive Rx, prepare to manage cardiac dysfunction and arrhythmias

Figure 2. Mortality of Patients With Coronavirus Disease 2019 (COVID-19) With/Without Cardiovascular Disease (CVD) and With/Without Elevated Troponin T (TnT) Levels

Guo et al. JAMA Cardiol. doi:10.1001/jamacardio.2020.1017

Rising cardiac biomarkers, specifically TnT and NT-proBNP, were identified in fatal cases

Guo et al. JAMA Cardiol. doi:10.1001/jamacardio.2020.1017

JAMA Cardiology | Brief Report

Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19)

Not every case has pneumonia! Covid19 can present as a cardiac illness

A Electrocardiography

Inciardi et al. JAMA Cardiol. doi:10.1001/jamacardio.2020.1096

Findings In this case report, an otherwise healthy 53-year-old patient developed acute myopericarditis with systolic dysfunction confirmed on cardiac magnetic resonance imaging a week after onset of fever and dry cough due to COVID-19. The patient was treated with inotropic support, antiviral drugs, corticosteroids, and chloroquine, with progressive stabilization of the clinical course.

Meaning The emerging outbreak of COVID-19 can be associated with cardiac involvement, even after the resolution of the upper respiratory tract infection.

Case highlights possibility of cardiac involvement after resolution (i.e. in the absence of) pneumonia

Inciardi et al. JAMA Cardiol. doi:10.1001/jamacardio.2020.1096

COVID-19 Infection	Concern	Interpretation		
A commutane atta an aav1	Should he draman 1	The inclusion in the declaration		
Asymptomatic or early	Should background	• There is no clear evidence that ACE1 or		
mild disease with	cardiovascular	ARB should be discontinued		
constitutional symptoms	medications be	 NSAIDs should be avoided 		
(fever, dry cough, diarrhea	modified?			
and headache)		<u> </u>		
Moderate disease with	Is there a	 Check troponin (evidence of 		
pulmonary complications	cardiovascular	myocardial injury and prognosis)		
and shortness of breath	contribution to the lung	 Check natriuretic peptides 		
(including hypoxia)	complications?	 Consider cardiac echocardiography to evaluate for evidence of underlying structural heart disease, high filling pressures Avoid overuse of intravenous fluids which may worsen underlying pulmonary edema 		
Advanced stage disease	Is there evidence of	Check for evidence of		
with hypoxia, vasoplegia	cardiogenic	hyperinflammation or a cytokine		
and shock	contribution to shock	release storm (elevated troponin,		
	and what therapy may	natriuretic peptides, CRP and serum		
20,	be potentially curative?	 ferritin>1000 ng/ml (measure IL-6 levels if available) If cardiac function is reduced (LVEF <0.50%), consider supportive care with 		
		inotropic therapy but move to consider anti-cytokine therapy with drugs such as tocilizumab and corticosteroids		

My K.I.S.S. algorithm Mild: No admission No change in cardiac Rxs Avoid NSAIDs

Moderate: Covid19 pneumonia History or high likelihood of CVD? Elevated cardiac biomarkers? 2-NOs: Ward admission [or discharge] 1-YES: Admit to ward for monitoring & care 2-YES: Telemetry and close supervision No echo/POCUS unless vitals are unstable Avoid excess fluid resuscitation

Severe: Covid19 sepsis/ARDS **Ventricular dysfunction on POCUS?** <u>NO</u>: serial biomarkers, needs ICU setting <u>YES</u>: *Inotropes (vaso- & cardio-plegia)* Consider anti-inflammatory Rx?

Mehra et al. JACC HF doi.org/10.1016/j.jchf.2020.03.004

QUESTIONS YOU MAY BE ASKED (or may ask yourself):

- 1. Does this patient have an ACS (NSTEMI and STEMI)?
- 2. Is myocardial ischemia contributing to their shock?
- 3. Might their pulmonary edema be cardiogenic (even in part)?

All 3 of which can be condensed into:

(A) should we send this patient for coronary angiography?

Unless your patient has typical **ischemic-CP** and **-ECG** changes – the answer is <u>NO</u>. Even with typical ischemic-CP and -ECG changes –angiography will show no occlusion. *Covid-19 myopericarditis can masquerade as ACS*.

Consider POCUS to look for segmental WMA that matches ECG, and R/O pericardial effusion.

(B) will invasive hemodynamic monitoring (CVP, PA) help manage this patient?

Without a convincing history (or echo) of pre-existing structural heart disease – the answer is <u>NO</u>. Even with known pre-existing LV dysfunction, valvular disease, *etc* – invasive monitoring to tailor inotropes may not change outcome – and may be too resource-intensive to warrant during crisis.

conditis, and hep	resentative I arent I of	Julations				
	Cardiovascular disease	Diabetes	Hypertension	Smoking	Coronary Artery Disease	Cerebrovascular Disease
Guan et al 2020 (28) (N=1099)	-	81 (7.3%)	165 (15.0%)	158 (14.4%)	27 (2.5%)	15 (1.4%)
Zhou et al 2020 (93) (N=191)	-	36 (18.8%)	58 (30.4%)	11 (5.8%)	15 (7.9%)	-
Wang et al 2020 (19) (N=138)	20 (14.5%)	14 (10.1%)	43 (31.2%)	C		7 (5.1%)
Huang et al 2020 (1) (N=41)	6 (14.6%)	8 (19.5%)	6 (14.6%)	3 (7.3%)		-
Ruan et al 2020 (21) (N=150)	13 (8.7%)	25 (16.7%)	52 (34.7%)	×0-		12 (8.0%)
Wu et al 2020 (27) (N=201)	8 (4.0%)	22 (10.9%)	39 (19.4%)	- 1		-
Wu et al 2020 (15) ^C (N=44.672)	4690 (10.5%) ^B	3261 (7.3%	2903 (6.5%)	< -		-
Fang et al 2020 ^{C, D}	233 (8.3%)^	206 (7.3%)	376 (13.3%)		-	-
Lu et. al. 2018 (94) ^E (N=12.654)	1455 (11.5%)	2125 (16.8%)	4884 (38.6%)	4985 (39.4%)		278 (2.2%)

Table 1. Relative Frequency of Cardiovascular Risk Factors or Underlying Cardiovascular Conditions in Available COVID-19 Cohorts, and Representative Parent Populations

^A To date, no publications have described these statistics for COVID-19 patients from other areas including South Korea, Iran, Italy, Spain, and others. Therefore, the comparator parent population was chosen from China.

^B Composite cardiovascular + cerebrovascular disease

^C These studies by Wu et al and Fang et al include a large, population-based dataset and a meta-analysis, respectively, from China that are inclusive of the other displayed cohort studies

^D Reference: Fang et al 2020. Clinical Characteristics of Coronavirus Pneumonia 2019 (COVID-19): An Updated Systematic Review. medRxiv doi: https://doi.org/10.1101/2020.03.07.20032573

^E Chinese population prior to COVID-19 included for comparison. Please note that disease ascertainment has been different in this study compared with studies of patients with COVID-19.

		Outcome Variable	Guan et al 2020 (28)* N=1090	Zhou et al 2020 (93) N=191	Wang et al 2020 (19) N=138	Huang et al 2020 (1) N=41	Ruan et al 2020 (5) N=150	Wu et al 2020 (27) ^B N=201
A. Cardiovascular Risk Factors	Diabetes	ICU vs. non-ICU			8 (22.2%) vs. 6 (5.9%)	1 (7.7%) vs. 7 (25.0%)		
		Severe vs. non- severe	28 (16.2%) vs. 53 (5.7%)	2 5 fold	4 fold	4 fold	-	2 fold
		Dead vs. alive	3 fold	17 (31.4%) vs. 19 (13.9%)	2.5 fold	-	12 (17.6%) vs. 13 (15.9%)	11 (25.0%) vs. 5 (12.5%)
	Hypertension	ICU vs. non-ICU			21 (58.3%) vs. 22 (21.6%)	2 (15.4%) vs. 4 (14.3%)	-	-
		Severe vs. non- severe	41 (23.7%) vs. 124 (13.4%)	2 fold		-	2 fold	2 fold
		Dead vs. alive	2 fold	26 (48.1%) vs. 32 (23.4%)	~0`	-	29 (42.6%) vs. 23 (28.0%)	16 (36.4%) vs. 7 (17.5%)
	Smoking	ICU vs. non-ICU			- () -	0 vs. 3 (10.7%)		-
		Severe vs. non- severe	38 (22.0%) vs. 130 (14.0%)	2 fold	-	-	-	
		Dead vs. alive		5 (9.3%) vs. 6 (4.4%)	2.5-1010			
B. Cardiovascular Disease	Coronary artery disease	ICU vs. non-ICU	2.5 fold		9 (25.0%) vs. 11 (10.8%)	-		
		Severe vs. non- severe	10 (5.8%) vs. 17 (1.8%)	4 fold		-		
		Dead vs. alive		4 (7.4%) vs. 2 (1.5%)				
	Cerebrovascular disease	ICU vs. non-ICU	2 fold	Χ -	6 (16.7%) vs. 1 (1.0%)	-	-	
		Severe vs. non- severe	4 (2.3%) vs. 11 (1.2%)			-	2 fold	
		Dead vs. alive	100	-		2 fold	7 (10.3%) vs. 5 (6.1%)	
	Cardiovascular disease	ICU vs. non-ICU	1	-		3 (23.0%) vs. 3 (10.7%)		
		Severe vs. non- severe	-	-		-	-	-
		Dead vs. alive	0 -			-	13 (19.1%) vs. 0	4 (9.1%) vs. 4

Table 2. Association Between Underlying Cardiovascular Risk Factors (A), Known Cardiovascular Disease (B) and Outcomes in COVID-194

^AOnly a few studies, with single center experience have presented data to date, which limits the generalizability of the findings, and the confidence in the point estimates. ^BThis study used multivariable modeling for outcome of death for each CV risk factor for CVD

Driggin E et al, J Am Coll Cardiol (2020), doi: https://doi.org/10.1016/j.jacc.2020.03.031

Antiviral Therapy	ClinicalTrials.gov Identifiers	Mechanism of Action	CV Drug Class Interactions	CV Adverse Effects
Ribavirin	NCT04276688 NCT00578825	Inhibits replication of RNA and DNA viruses	Anticoagulants*	Unknown
Lopinavir/ Ritonavir	NCT04252885 NCT04275388 NCT04276688 NCT04286503 NCT02845843 NCT04307693 NCT04261907 NCT04295551 NCT00578825	Lopinavir is a protease inhibitor; Ritonavir inhibits CYP3A metabolism increasing levels of lopinavir	Antiplatelets* Anticoagulants* Statin* Antiarrhythmics*	-Altered cardiac conduction: QTc prolongation, high degree AV block, torsade de pointes
Remdesevir	NCT04302766 NCT04280705 NCT04292899 NCT04292730	Nucleotide- analog inhibitor of RNA- dependent RNA polymerases	Unknown	Unknown
*Indicates dr medication in	ug class interactions. nteractions.	Table 5 summari	zes specific recomme	ndations in the setting of
Driggin E	et al I Am Coll Care	Vial (2020) dai: htt	tps://doi.org/10.1016/i	

Table 3. Antiviral Therapies Currently being Studied for COVID-19: Potential Cardiovascular Interactions and Toxicities

Driggin E et al, J Am Coll Cardiol (2020), doi: https://doi.org/10.1016/j.jacc.2020.03.031

Therapy	ClinicalTrials.gov	Mechanism of	CV Drug	CV Adverse
Bevacizumab	NCT04275414	Evidence has revealed higher VEGF levels in COVID-19 patients. By inhibiting VEGF, can decrease vascular permeability and pulmonary edema.	Unknown	-Direct myocardial toxicity vs. exacerbation of underlying cardiomyopathy -Severe hypertension -Thromboembolic events
Chloroquine/ Hydroxychloroquine	NCT04286503 NCT04303507 NCT04307693 NCT04261517 NCT04303299	Alters endosomal pH required for virus/cell fusion	Antiarrhythmics*	-Direct myocardial toxicity vs. exacerbation of underlying cardiomyopathy -Altered cardiac conduction: AV block, bundle branch block, torsade de pointes, ventricular tachycardia/fibrillation
Eculizumab	NCT04288713	Inhibits complement activation	Unknown	 Hypertension, tachycardia, peripheral edema
Fingolimod	NCT04280588	Inhibits lymphocytes through sphingosine-1 phosphate regulation	Antiarrhythmics	 Hypertension, first and second degree AV block, bradycardia, QTc prolongation Contraindicated after myocardial infarction, unstable angina, CVA/TIA, ADHF Contraindication with: high degree AV block, sick sinus syndrome, QTc ≥ 500 ms

Driggin E et al, J Am Coll Cardiol (2020), doi: https://doi.org/10.1016/j.jacc.2020.03.031

Interferon	NCT04275388 NCT04273763 NCT04276688 NCT02845843 NCT04293887 NCT04251871 NCT04291729	Immune activation	Unknown	 Direct myocardial toxicity vs. exacerbation of underlying cardiomyopathy Reports of: hypotension, arrhythmia, cardiomyopathy, myocardial infarction
Pirfenidone	NCT04282902	Antifibrotic ability, possible IL-1β and IL-4 inhibition to reduce cytokine storm and resultant pulmonary	Unknown	Unknown
		fibrosis		
Methylprednisolone	NCT04273321 NCT04244591	Alters gene expression to reduce inflammation	Anticoagulants*	- Fluid retention, - Electrolyte disturbances - Hypertension
Tocilizumab	NCT04306705	Inhibits IL-6 receptor	Possibility of increasing metabolism of medications: Unknown effects	-Hypertension, increased serum cholesterol -No known effect on QTc interval

*Indicates drug class interactions. Table 5 summarizes specific recommendations in the setting of medication interactions. ADHF = acute decompensated heart failure; CVA/TIA = cerebrovascular accident/transient ischemic attack.

Driggin E et al, J Am Coll Cardiol (2020), doi: https://doi.org/10.1016/j.jacc.2020.03.031

Therapy	Specific Interaction	MOA of Drug Interaction and	Other Notes
		Specific Dose Adjustments	
Ribavirin	Anticoagulants	Unknown mechanism of action:	Monitor INR
	Warfarin	No dosage adjustment	
		recommended.	
Lopinavir/Ritonavir	Anticoagulants	CYP3A4 inhibition:	Dabigatran and warfarin can be
	 Apixaban 	Apixaban should be administered at	administered with caution
	Rivaroxaban	50% of dose (do not administer if	
		requirement 2.5 mg per day).	
		Rivaroxaban should not be co-	
		administered.	<i>a</i>
	Antiplatelet	CYP3A4 inhibition:	Consider prasugrel if no
	Clopidogrel	Diminished effect of clopidogrel.	contraindications. If other agents
	Ticagrelor	Do not co-administer. Increased	used, consider a testing-guided
		effect of ficagrelor. Do not co-	approach (e.g. P2 Y ₁₂ platelet
		administer.	function assay).
	Statin	OATTP1B1 and BCRP inhibition:	Start at lowest possible dose of
	Atorvastatin	Rosuvastatin should be adjusted to	rosuvastatin and atorvastatin and
	 Rosuvastatin 	maximum dose 10 mg/day.	titrate up. Pravastatin and pitavastatin
	Lovastatin		can also be considered.
1	Simuastatin	CYP3A4 inhibition:	
Chloroquine / Hydroxychloroquine	Beta Blockers	CYP 2D6 inhibition:	Use cautiously with antiarrhythmics
	 metoprolol, carvedilol, 	Dose reduction for beta blockers	A** * * *
	propranolol, labetalol	may be required.	
		P-glycoprotein inhibition:	
	Antiarrhythmics	Monitor digoxin level for possible	
	 QT-prolonging agents 	dose reduction.	
	Digoxin		

Table 5 Recommendations	Regarding Dosing an	d Adjustment in the Settin	og of Medication Interactions
rabit c. recommendations	regaroing boomg an	a rid astincht in the Stitle	ig of miconcation interactions

Driggin E et al, J Am Coll Cardiol (2020), doi: https://doi.org/10.1016/j.jacc.2020.03.031

Driggin E et al, J Am Coll Cardiol (2020), doi: https://doi.org/10.1016/j.jacc.2020.03.031

COVID-19 NEGATIVE COVID-19 POSITIVE CONSIDER CV SEQUELAE **GENERAL PREVENTION** • Myocarditis • Handwashing • Clean and disinfect • Heart failure **NO PRIOR** • Cardiogenetic shock Avoid close contact CVD • Acute coronary syndrome • Stay home if sick • Venous thromboembolism Social distancing • Stress cardiomyopathy CV PROVIDER CONSIDERATIONS • Appropriate PPE PRIOR **CV RISK STRATIFICATION** HEIGHTENED AWARENESS CVD • CV sequelae (as above) • Telemedicine and e-visits • Closer monitoring as worse prognosis • Self / remote monitoring • CV medication interactions • Prioritizing high-risk visits and procedures and toxicities • Personal protective equipment (PPE)

Driggin E et al, J Am Coll Cardiol (2020), doi: https://doi.org/10.1016/j.jacc.2020.03.031